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Abstract

Text-to-audio systems have gained attention in recent months,
achieving impressive results in general audio synthesis. However,
they often lack fine-grained control over the musical output, as
note-level adjustments cannot be determined by text. In this work,
we present MIDI-AudioLDM, which implements MIDI conditioning
into AudioLDM with the use of ControlNet. This enables MIDI-
conditional text-to-audio synthesis, which adds up to AudioLDM’s
previous capacities, including direct text-to-audio synthesis as well
as audio style transfer and inpainting. Like AudioLDM, the model
uses contrastive language-audio pretraining (CLAP) latents and
is trained on audio embeddings, while using text embeddings for
inference. In contrast to unconditional audio synthesis, MIDI-
AudioLDM offers detailed control over various musical aspects such
as notes, genre, mood, and timbre, which makes it a more valuable
tool for the music production process. A demo is available at
https://huggingface.co/spaces/lauraibnz/midi-audioldm.

Keywords: audio synthesis, MIDI conditioning, text-to-audio
systems, AudioLDM, ControlNet

1 Introduction

Over the past years, text-to-image models like DALL·E (Ramesh et al., 2021),
Midjourney (Holz et al., 2022) and Stable Diffusion (Rombach et al., 2022)
have achieved remarkable success, and AI-generated images have made their
way into popular culture. Similarly, the first text-to-audio models such as
MusicLM (Agostinelli et al., 2023), AudioLDM (H. Liu, Chen, et al., 2023) or
MusicGen Copet et al., 2023 have been introduced and remain a significant
focus of research.

More particularly, AudioLDM (H. Liu, Chen, et al., 2023) is a latent dif-
fusion model that employs contrastive language-audio pretraining (CLAP)
latents to perform text-to-audio generation in the spectrogram domain. This
model has demonstrated impressive results in general audio synthesis, as
well as text-conditional audio-to-audio tasks such as style transfer and audio
inpainting. However, this and similar works lack detailed control over the
musical output, as only broader aspects like mood or timbre can be deter-
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Figure 1: MIDI and audio from the same musical piece in Ableton Live.

mined by text. This makes them less practical for use in the music production
process, where note-level control is often necessary.

Musical Instrument Digital Interface (MIDI) (MIDI Manufacturers Associa-
tion, 1996), on the other hand, is a symbolic representation that “describes
music using a notation containing the musical notes and timing, but not the
sound or timbre of the actual sound” (DuBreuil, 2020). As in sheet music,
MIDI contains information such as note pitch, loudness, onset and offset, but
has no sound by itself and needs to be played by an instrument. This is of-
ten carried out with the use of Virtual Studio Technology (VST) (Steinberg,
1996) instruments, often integrated into Digital Audio Workstations (DAWs)
like Ableton Live. An example of a MIDI track and an audio signal from the
same musical piece is shown in Figure 1.

Thus, the hypothesis driving this study is that the addition of MIDI condi-
tioning to AudioLDM can provide further musical control over the generated
output, including note-level pitch and loudness adjustment, which can serve
as a valuable tool during the music production process.

To achieve this goal, we incorporate MIDI conditioning into AudioLDM with
the use of ControlNet (Zhang & Agrawala, 2023), a neural network archi-
tecture that enables the addition of conditional control to latent diffusion
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models. This model, primarily implemented into text-to-image models like
Stable Diffusion (Rombach et al., 2022), locks a production-ready large dif-
fusion model and reuses its layers as a backbone to learn a set of additional
controls. In our study, we adapt ControlNet to the AudioLDM architecture,
allowing it to accept a MIDI file as conditioning by converting it previously
to a spectrogram-like image. The resulting model, named MIDI-AudioLDM,
is implemented in Hugging Face’s Diffusers library (von Platen et al., 2022).
A demo1 hosted in Hugging Face’s Spaces is provided for experiments and
further research.

The rest of this document is structured as follows: section 2 presents a re-
view of relevant works in audio synthesis and text-to-audio systems; section
3 describes the proposed method, including the original AudioLDM architec-
ture and the adaptation of the ControlNet structure; section 4 outlines the
experimental setup, including the dataset selection, model implementation,
training and evaluation process; section 5 presents results and a comparison
with state-of-the-art models; section 6 discusses ethical and social implica-
tions of an application of this type; and section 7 draws conclusions and
presents potential avenues for future research.

2 Related Work

This section provides an overview of the existing approaches to neural au-
dio synthesis, including recent advances in conditional audio generation and
state-of-the-art text-to-audio systems.

2.1 Neural Audio Synthesis

Audio synthesis is the process of generating sound using electronic hardware
or software. This task has been traditionally carried out with the use of syn-
thesizers, through methods such as additive (Weidenaar, 1995), subtractive
(Moog, 1964), or FM (Chowning, 1977) synthesis. However, as highlighted
by (Y. Wu, Manilow, et al., 2022), these often provide detailed expressive
controls at the expense of realism. In recent years, an increasing number
of studies have focused on audio synthesis using deep learning techniques,
commonly referred to as “neural audio synthesis”. While the terms “audio

1https://huggingface.co/spaces/lauraibnz/midi-audioldm
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synthesis” and “audio generation” are often used interchangeably, “synthe-
sis” typically denotes the process of transformation from another represen-
tation into audio, whereas “generation” tends to involve the creation of a
musical piece. Similarly, the term “music generation” often implies the use
of symbolic music representations such as MIDI.

Spectrograms, as described in (DuBreuil, 2020), have been a popular way of
handling audio in machine learning, as they are compact and enable easier
feature extraction in comparison to waveforms. A spectrogram is the result
of applying the Fourier transform (Fourier, 1822) to overlapping frames from
an audio signal and therefore decomposing it into its constituent frequencies.
This visual representation contains time in the horizontal axis and frequency
in the vertical axis, with color intensity corresponding to the audio amplitude.
A mel-spectrogram, in turn, is a spectrogram where the frequencies have
been converted to the mel scale. This scale is a perceptual scale of pitch in
which equal distances sound equally distant to listeners. A common way of
converting a spectrogram back into audio is with the use of neural vocoders.

As outlined by (DuBreuil, 2020), audio synthesis is a complex task, as it
requires models to handle large numbers of samples per second while simul-
taneously keeping track of the broader structure. This is due to the sequential
nature of the data, and the existence of long-range temporal dependencies
such as musical patterns or phrases in speech. In the case of music generation,
these systems are also expected to be expressive and realistic, and provide
certain degrees of control in order to guide the audio synthesis process. To
address these challenges, various strategies have been developed. These are
described next.

Autoregressive waveform modeling. An initial approach to this problem
is autoregressive waveform modeling . Some of the earliest and most pop-
ular models employ this technique, including WaveNet (Oord et al., 2016),
SampleRNN (Mehri et al., 2017) and WaveRNN (Kalchbrenner et al., 2018).
These models, which are based on recurrent neural networks (RNNs) or vari-
ations, predict waveforms one sample at a time, conditioning each sample on
the previously generated ones. While they have demonstrated their ability to
consistently capture the long-term structure of audio, both the training and
inference process can be slow and computationally expensive, particularly
for long and high-quality audio signals. Moreover, as shown in Figure 2, a
waveform’s shape does not perfectly correspond to how sound is perceived.
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Figure 2: Challenges of neural audio synthesis, from the DDSP paper (Engel
et al., 2019).

Adversarial training. A second approach involves the use of generative
adversarial networks (GANs). This is the case of other early methods such as
GANSynth (Engel et al., 2019) and WaveGAN (Donahue et al., 2019), which
aimed to replicate the latest advances in the image generation field at the
time. Some of these models, like WaveGAN, work by modeling waveforms
directly in the time domain, while others such as GANSynth generate wave-
forms from their corresponding Fourier coefficients in the frequency domain.
Both of these representations are general and can describe any waveform,
but they can suffer from high bias (Engel et al., 2020). As audio signals are
comprised of multiple frequency components with varying periods, the model
is required to precisely learn to align waveforms and apply filters to cover all
possible phase variations. In addition, Fourier-based models can suffer from
spectral leakage, as multiple neighboring frequencies and phases are often
combined to represent a single sinusoid when Fourier basis frequencies do
not perfectly match the audio. These challenges are depicted in Figure 2.

Oscillators. A third approach consists of generating audio using oscillator
models, such as vocoders and synthesizers, as seen in Differentiable Digital
Signal Processing (DDSP) (Engel et al., 2020). These models combine classic
signal processing elements with deep learning methods in a modular way,
utilizing prior knowledge of how sound is naturally generated and perceived.
As discussed in (Hayes et al., 2023), DDSP models are often praised for their
interpretability and efficiency, as they are very fast to train. However, they
currently rely on accurate estimates of the fundamental frequency, which
complicates the rendering of polyphonic music and of non-harmonic sounds
such as drums.
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Variational autoencoders. More recently, models like Jukebox (Dhariwal
et al., 2020) or RAVE (Caillon & Esling, 2021) have incorporated variational
autoencoders (VAEs) to address the audio generation task. While Juke-
box implements three separate VQ-VAE (van den Oord et al., 2018) models
with different temporal resolutions for raw waveform modeling, Realtime
Audio Variational autoEncoder (RAVE) adopts a two-stage training proce-
dure, consisting of representation learning and adversarial fine-tuning. The
model achieves real-time audio synthesis at a high sample rate by leveraging
a multi-band decomposition of the raw waveform.

Diffusion models. Finally, models such as DiffWave (Z. Kong et al., 2021)
and WaveGrad (N. Chen et al., 2020) have applied diffusion models to au-
dio synthesis tasks. Diffusion probabilistic models, initially introduced in
(Sohl-Dickstein et al., 2015) and popularized by (Ho et al., 2020), involve a
forward diffusion process, which gradually adds noise to the training data
through a Markov chain, followed by a denoising reverse process. After their
success in the image generation field, diffusion models have proven promising
results in waveform generation tasks, including speech synthesis and, more
recently, text-to-audio generation.

2.2 Conditional Audio Generation

With regard to conditional audio generation, some models like Jukebox
(Dhariwal et al., 2020) have enabled artist, genre or lyrics conditioning with
the use of Transformers. Transformer models, first introduced in (Vaswani
et al., 2017), learn context and meaning by establishing relationships in se-
quential data such as words. Therefore, they are often used for encoding
speech and lyrics, as well as for predicting MIDI note events in symbolic
music generation (C.-Z. A. Huang et al., 2018; Shih et al., 2022). In the
case of Jukebox, this information is used to condition a series of Transformer
models in order to generate the VQ-VAE codes which are then decoded into
audio. This enables users to have more control over the style and content of
the generated music.

On the other hand, and more related to the current research, some studies
have enabled MIDI-to-audio synthesis (Cooper et al., 2022; Hawthorne et al.,
2019, 2022; J. W. Kim et al., 2018; Manzelli et al., 2018; Y. Wu, Manilow,
et al., 2022). The earliest of these models (Hawthorne et al., 2019; J. W.
Kim et al., 2018; Manzelli et al., 2018) work by conditioning a WaveNet
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(Oord et al., 2016) model, and therefore generate audio in an autoregres-
sive manner. Alternatively, MIDI-DDSP (Y. Wu, Manilow, et al., 2022)
has integrated MIDI conditioning into DDSP (Engel et al., 2020) models.
While DDSP works by generating audio from frequency and loudness con-
trol parameters, MIDI-DDSP extracts these directly from MIDI notes by
accurately predicting performance attributes. More recently, (Hawthorne et
al., 2022) presents multi-instrument MIDI-to-audio synthesis using diffusion
models. This model uses an encoder-decoder Transformer, where the decoder
is trained as a diffusion model, to perform spectrogram to audio synthesis,
followed by a GAN spectrogram inverter to acquire the resulting waveform.
This work obtains promising results by prioritizing interactivity and gener-
ality in contrast to instrument-specific and less controllable audio synthesis
methods.

2.3 Text-to-Audio Systems

Text-to-audio systems present another form of conditional audio generation.
These models have emerged following the latest advances in the image gen-
eration field and, more specifically, in text-to-image synthesis (Holz et al.,
2022; Ramesh et al., 2021; Rombach et al., 2022). The success of these mod-
els has been made possible by the existence of multi-modal models such as
CLIP (Radford et al., 2021), which, combined with diffusion models, enable
the generation of images with high adherence to specific text descriptions.
CLIP models establish relationships between the visual and language do-
mains by learning an embedding space common to both. During the last
years, some works have extended CLIP to the audio domain, as is the case of
AudioCLIP (Guzhov et al., 2021) or Wav2CLIP (H.-H. Wu et al., 2022). Sim-
ilarly, some studies have presented Contrastive Language-Audio Pretraining
(CLAP) models (Elizalde et al., 2022; Q. Huang et al., 2022; Y. Wu, Chen,
et al., 2022), which learn audio concepts directly from natural language. A
third approach involves the use of large-scale language models (LLM) (Sa-
haria et al., 2022), which are trained on larger text-only corpus and are
therefore exposed to a richer distribution of text.

One of the first text-to-audio works to appear in the context of diffusion
models is Riffusion (Forsgren & Martiros, 2022). This model directly applies
Stable Diffusion (Rombach et al., 2022) to spectrogram generation by fine-
tuning it on a set of spectrogram images paired with text. This, combined
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with a vocoder model that converts spectrograms back into waveforms, en-
ables audio generation directly from text prompts using a text-to-image dif-
fusion model. Another early study is Diffsound (Yang et al., 2023), a discrete
diffusion model for text-to-audio generation, also in the frequency domain.
Diffsound extracts tokens from the input text using a CLIP model, and then
feeds these to a spectrogram decoder. It is trained on AudioCaps (C. D. Kim
et al., 2019), a large-scale dataset of audio and human-written text captions.
AudioGen (Kreuk et al., 2023), on the other hand, learns an audio represen-
tation directly from the raw waveform, and uses an auto-regressive setting
to allow the generation of high-quality samples.

Slightly later in the timeline, (Agostinelli et al., 2023) presents MusicLM,
a hierarchical sequence-to-sequence model that can be conditioned on
both text and melody, using joint music-text embeddings from MuLan
(Q. Huang et al., 2022). The paper also introduces the MusicCaps2 dataset
of music-text pairs, with rich descriptions provided by human experts.
The results provided demonstrate that the model outperforms previous
works, and the generated audio shows great adherence to the input text
descriptions. Unfortunately, neither MuLan nor MusicLM are available for
public use. Also at this time, the models Make-An-Audio (R. Huang et al.,
2023) and Moûsai (Schneider et al., 2023) are released, both of which follow
a latent diffusion approach. While Make-An-Audio uses CLAP embeddings
(Elizalde et al., 2022) and focuses on the problem of data scarcity in these
tasks, Moûsai uses a large-scale language model (Saharia et al., 2022) and
achieves successful results in real-time audio generation at a high sample
rate.

Following these works, AudioLDM (H. Liu, Chen, et al., 2023) is introduced.
This model uses CLAP embeddings (Y. Wu, Chen, et al., 2022) to train
a latent diffusion model (LDM). Its structure is detailed in the following
sections, and it has been chosen as an appropriate starting point for this study
due to its successful results in text-to-audio synthesis, along with providing
open-source code and pre-trained checkpoints. The base model has been
trained on AudioSet (Gemmeke et al., 2017), AudioCaps (C. D. Kim et
al., 2019), Freesound (Font Corbera et al., 2013) and BBC Sound Effect
library (SFX) (British Broadcasting Corporation, 1997). Further fine-tuning
using the MusicCaps dataset (Agostinelli et al., 2023) has been carried out

2https://www.kaggle.com/datasets/googleai/musiccaps
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only for some of the checkpoints. In addition to text-to-audio synthesis,
AudioLDM is capable of performing text-driven audio-to-audio tasks such as
audio inpainting and style transfer.

In parallel to the current research, a few other relevant works in the field
of text-to-audio synthesis have been presented. A notable example is Mu-
sicGen (Copet et al., 2023), a language model comprised of a single-stage
Transformer that utilizes token interleaving patterns, eliminating the need for
cascading multiple models. It can be conditioned on both text and melody,
and has shown great efficiency in generating high-quality samples. Another
case is AudioLDM 2 (H. Liu, Tian, et al., 2023), which introduces a novel ap-
proach to speech, music or sound effects generation with means of a general
audio representation named “language of audio” (LOA).

On the other hand, some works like ControlNet (Zhang & Agrawala, 2023)
have introduced conditional control in text-to-image diffusion models, en-
abling the use of additional inputs in order to guide the image generation
process. Some of its applications, as demonstrated with Stable Diffusion
(Rombach et al., 2022), are canny edge maps or human pose control. Due to
its achievements and the architectural similarities between AudioLDM and
Stable Diffusion, ControlNet has been chosen as an appropriate way to apply
additional conditioning to this latent diffusion text-to-audio model.

3 Methods

In order to implement MIDI conditioning into AudioLDM with the use of
ControlNet, a thorough study of how these models work is conducted. In the
current section, a description of both of these models is provided, including
their architecture and any relevant loss functions.

3.1 AudioLDM

AudioLDM (H. Liu, Chen, et al., 2023) is a latent diffusion model, very
similar in structure to previous text-to-image models like Stable Diffusion
(Rombach et al., 2022). Its architecture is depicted in Figure 3. While this
diagram includes both text-to-audio (left) and audio-to-audio (right) tasks,
the current work focuses on the first. An overview of the different blocks
that conform AudioLDM is given next.
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Figure 3: AudioLDM architecture for text-to-audio and audio-to-audio
tasks, provided in the original paper (H. Liu, Chen, et al., 2023).

3.1.1 Contrastive Language-Audio Pretraining

One of main elements of AudioLDM is the use of contrastive language-audio
pretraining (CLAP) latents, which allow to establish relationships between
the audio and language domains. In AudioLDM, the CLAP model is trained
first, using a dataset of audio-text pairs. The procedure followed by the
author is based on (Y. Wu, Chen, et al., 2022), which suggests HTSAT (K.
Chen et al., 2022) as the audio encoder and RoBERTa (Y. Liu et al., 2019)
as the text encoder. The following symmetric cross-entropy loss is used as
the training objective:

L =
1

2N

N∑
i=1

(l1 + l2), (1)

l1 = log
exp(Ea

i · Et
i/τ)∑N

j=1 exp(E
a
i · Et

j/τ)
(2)

l2 = log
exp(Et

i · Ea
i /τ)∑N

j=1 exp(E
t
i · Ea

j/τ)
, (3)

where N is the batch size, Ea and Et are the audio and text embeddings
respectively, and τ is a learnable temperature parameter for scaling the loss.
Once trained, the embeddings (Ea, Et) can be used interchangeably, as a cor-
relation between both domains has been established. Due to the scarcity of
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paired audio-text data, audio embeddings Ea are usually preferred for train-
ing the latent diffusion model, while using text embeddings Et for inference
instead. This allows training with a dataset of only-audio, while providing
the user with more intuitive control over the generated audio output.

3.1.2 Variational Autoencoder

On the other hand, latent diffusion involves a prior encoding of the in-
put features into a latent space, to reduce their size and therefore facili-
tate the diffusion process. This is carried out with the use of a variational
autoencoder (VAE) (Kingma & Welling, 2022) in the case of AudioLDM,
in contrast to the use of discrete representations in Stable Diffusion. The
VAE in AudioLDM is conformed by an encoder and a decoder, both made
up of stacked convolutional modules. Each module is formed by ResNet
blocks (Q. Kong, Cao, et al., 2021), which are made up of convolutional lay-
ers and residual connections. A reconstruction loss, an adversarial loss and
a gaussian constraint loss are used as training objectives. Once trained, mel-
spectrograms that have been extracted from audio can be encoded into a
continuous latent vector z, which contains information about the mean and
variance of the VAE latent space.

3.1.3 Conditional Latent Diffusion Model

In diffusion models (Ho et al., 2020), the forward diffusion process consists
of adding Gaussian noise at each time step t, according to a predefined noise
schedule 0 < β1 < ... < βn < ...βN < 1, such that:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI). (4)

As shown by (Sohl-Dickstein et al., 2015), xt can be sampled at any arbitrary
noise level conditioned on x0:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (5)

with αt := 1− βt and ᾱt :=
∏t

s=1 αs. The reweighted training objective is:

LDM = Ex0,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(xt, t)∥22

]
, (6)

where:
∥ϵ− ϵθ(xt, t)∥22 = ∥ϵ− ϵθ(

√
ᾱtx0 +

√
(1− ᾱt)ϵ, t)∥22. (7)
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In conditional latent diffusion models (Rombach et al., 2022), the latent
representation zt is used instead, and the loss function becomes:

LLDM = Ez0,ϵ∼N (0,1),t,E

[
∥ϵ− ϵθ(zt, t,E)∥22

]
, (8)

where E are the domain specific extracted embeddings during training, in
our case Ea. For inference, after sampling some random Gaussian noise zT ,
the following reverse denoising process conditioned on the text embedding
Et applies:

pθ(zt−1|zt,Et) = N (zt−1;µθ(zt, t,E
t), σ2

t I)). (9)

The mean function and variance are parameterized as follows:

µθ(zt, t,E
t) =

1
√
αt

(zt −
βt√
1− ᾱt

ϵθ(zt, t,E
t)),

σ2
t =

1− ᾱt−1

1− ᾱt

βt,

(10)

where ϵθ(zt, t,E
t) is the predicted noise and σ2

1 = β1.

3.1.4 UNet

As in Stable Diffusion (Rombach et al., 2022), a UNet (Ronneberger et al.,
2015) backbone is used as the basic architecture of the latent diffusion model.
The UNet from (Rombach et al., 2022) is shown in Figure 4. In AudioLDM,
however, the cross-attention mechanism is not used, as the conditioning vec-
tor is only one-dimensional in this case. Instead, the time step is mapped into
a one-dimensional embedding and concatenated with E, and a feature-wise
linear modulation layer (Perez et al., 2017) is used to merge this conditioning
information with the feature map of the UNet convolution block. The UNet
in AudioLDM has four encoder blocks, a middle block, and four decoder
blocks. Setting a starting number of channel dimensions cu, the encoder
blocks have [cu, 2cu, 3cu, 5cu] channel dimensions respectively. The middle
block has 5cu channel dimensions and the channel dimensions of the decoder
blocks correspond to those of the reversed encoder blocks. An attention block
consisting of two multi-head self-attention layers with a fully-connected layer
in the middle is added in the last three encoder blocks and the first three
decoder blocks.
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Figure 4: UNet architecture in latent diffusion models (Rombach et al.,
2022).

3.1.5 Vocoder

Neural vocoders are commonly employed in audio synthesis for converting
mel-spectrograms back into audio. In the case of AudioLDM, the HiFi-
Gan (J. Kong et al., 2020) vocoder is used, which has been widely utilized
in speech synthesis tasks. Once z0 is obtained from the latent diffusion
model, the VAE decoder transforms it into a mel-spectrogram. This mel-
spectrogram is then fed to the vocoder to generate the corresponding wave-
form, representing the last step of the AudioLDM pipeline.

3.2 ControlNet

ControlNet (Zhang & Agrawala, 2023) is a neural network structure that pro-
vides conditional control in text-to-image latent diffusion models like Stable
Diffusion (Rombach et al., 2022). It does so by manipulating the input con-
ditions of neural network blocks, which refer to a set of neural layers that
are frequently put together creating a unit, as for example a ResNet block
(Q. Kong, Cao, et al., 2021). This neural neural network block with a set of
parameters θ transforms input features x to a feature map y, such that:

y = F(x; θ), (11)
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Figure 5: ControlNet applied to a neural network block (Zhang & Agrawala,
2023).

as can be visualized in Figure 5a. In ControlNet, the parameters in θ are
locked and cloned into a trainable copy θc, to be trained with an external
conditioning vector c. Zero convolution layers are added, which consist of a
1 × 1 convolution layer where both weight and bias are initialized to zero.
The resulting structure can be visualized in Figure 5b. This way, the output
of the neural network block becomes:

yc = F(x, θ) + Z(F(x+ Z(c; θz1); θc); θz2), (12)

where Z(·; ·) denotes the zero convolution operation with parameters {θz1 ,
θz2}. In the first training step, as both the weight and bias of each zero con-
volution layer are initialized to zeros, yc = y. As the training progresses, the
zero convolution layers progressively grow from zero to optimized parameters
in a learned way.

The implementation of ControlNet into Stable Diffusion is shown in Figure 6.
A trainable copy of the 4 × 3 encoder blocks and 1 middle block from the
UNet is created. The encoder blocks are in resolutions (64 × 64, 32 × 32,
16× 16, 8× 8) respectively. The outputs of the trainable copies are added to
the 12 skip-connections and 1 middle block of the UNet. This way, the loss
function from Equation 8 becomes:

LLDM = Ez0,ϵ∼N (0,1),t,E,c

[
∥ϵ− ϵθ(zt, t,E, c)∥22

]
, (13)

where c are the task-specific extra conditions.
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Figure 6: ControlNet (Zhang & Agrawala, 2023) implementation in Stable
Diffusion (Rombach et al., 2022).

In the case of AudioLDM, the UNet is conformed by the same number of
encoder, middle and decoder blocks as Stable Diffusion, although the chan-
nel dimensions vary based on an initial value cu. While the Stable Diffusion
encoder blocks have [320, 640, 1280, 1280] channel dimensions respectively,
the UNet encoder blocks in AudioLDM with cu = 192 have [192, 384, 576,
960] channel dimensions respectively. The input latent vectors in Stable Dif-
fusion are of size 64 × 64, while those of AudioLDM are of size 128 × 128.
Finally, AudioLDM does not use a cross-attention mechanism, but concate-
nates the conditioning vector to the time embedding instead. Therefore, the
implementation of ControlNet into AudioLDM is considered feasible, after
aplying the according modifications.
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In respect to the input conditioning, a piano roll can be used, which consists
of a visual representation of MIDI that resembles an audio spectrogram and
which is often used for music generation tasks (Briot et al., 2019). The
resulting model is named MIDI-AudioLDM.

4 Experimental Setup

In order to prove the hypothesis presented at the beginning of this work, a
series of experiments are carried out. The current section provides a detailed
description of the experimental setup, including dataset selection, model im-
plementation, training configuration and evaluation process.

4.1 Datasets

For training MIDI-AudioLDM, a dataset of aligned MIDI and audio pairs is
needed. A thourough study of the existing datasets of this kind is carried
out, and the ones found most appropriate for this work are described next.

MAESTRO. The MIDI and Audio Edited for Synchronous TRacks and Or-
ganization (MAESTRO)3 dataset, presented in (Hawthorne et al., 2019), has
been widely used for a variety of tasks involving symbolic representations of
music. The dataset contains around 200 hours of recordings and MIDI files
from an international piano competition, with fine alignment (≈ 3 ms) be-
tween note labels and audio waveforms. Some of its principal uses have been
music transcription (Bittner et al., 2022; Gardner et al., 2022; Hawthorne et
al., 2019; Q. Kong, Li, et al., 2021), music information retrieval (Zeng et al.,
2021), and symbolic music generation (Dong et al., 2020). More in line with
the current research, MAESTRO was used in its original paper (Hawthorne
et al., 2019) and other works (Cooper et al., 2022; Hawthorne et al., 2022)
to perform MIDI-to-audio synthesis.

URMP. The University of Rochester Multi-Modal Music Performance
(URMP)4 dataset, initially introduced in (Li et al., 2019), comprises a
number of simple multi-instrument musical pieces, made up of aligned but
separately recorded performances of each individual track. The correspond-
ing MIDI files are provided, as well as ground-truth pitch annotations. As

3https://magenta.tensorflow.org/datasets/maestro
4https://labsites.rochester.edu/air/projects/URMP.html
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in the case of MAESTRO, the dataset has been used for music transcription
tasks (Gardner et al., 2022), but also for MIDI-conditional audio synthesis
(Hawthorne et al., 2022; Y. Wu, Manilow, et al., 2022).

Slakh. The Synthesized Lakh (Slakh)5 dataset, presented in (Manilow et al.,
2019), contains 2100 multi-track audio, which are synthesized from individual
MIDI tracks from the Lakh MIDI dataset (Raffel, 2016), using professional
and sample-based virtual instruments. Every track in the dataset contains at
least piano, bass, guitar, and drum stems, as well as the mixes created from all
the stems. The Slakh dataset has been used to perform music transcription
(Gardner et al., 2022), as well as MIDI-to-audio synthesis (Hawthorne et al.,
2022).

A summary of these datasets, based on the one provided in Gardner et al.,
2022, is shown in Table 1. This includes the hours of audio, the number
of instruments and the alignment quality of the dataset annotations. In
addition, it provides information about whether the audio is synthetic or not,
and if it includes drums or mixes. As can be seen, each dataset has a set of
advantages and disadvantages. Slakh contains a substantial amount of audio
from a variety of instruments, but its audio is synthetic and might not be ideal
for audio synthesis tasks. On the other hand, MAESTRO has good aligment
quality and contains a fair amount of recordings, but its audio comes from
a single instrument, piano. URMP, in contrast, contains a varied amount
of instruments, but is a low-resource dataset and its alignment quality is
worse. In the following sections, a number of experiments involving different
combinations of these datasets are described.

DATASET Hrs.
Num.

Alignment
Low-

Synthetic Drums Mix
Instr. Resource

Slakh 969 35 good ✓ ✓ ✓
MAESTRO 199 1 good
URMP 1 14 fair ✓ ✓

Table 1: Summary of the selected datasets, based on (Gardner et al., 2022).

5http://www.slakh.com/
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4.2 Implementation

The implementation of ControlNet into AudioLDM is carried out in Python
using the Diffusers library (von Platen et al., 2022). The details of such
implementation are described next.

Hugging Face’s Diffusers library. In the first place, a thorough study of
the official code repositories for AudioLDM6 (H. Liu, Chen, et al., 2023) and
ControlNet7 (Zhang & Agrawala, 2023) is conducted. Since both models are
available in Hugging Face’s Diffusers8 library (von Platen et al., 2022), it is
found suitable to develop the project within this framework. The Diffusers
library is described by its authors as the “go-to library for state-of-the-art
pretrained diffusion models for generating images, audio, and even 3D struc-
tures of molecules”(von Platen et al., 2022). It includes diffusion pipelines for
easy inference, as well as pretrained models for a variety of tasks. Diffusers
uses PyTorch>= 1.4 as well as Hugging Face’s Transformers9 (Wolf et al.,
2020) and Accelerate10 (Gugger et al., 2022) libraries.

AudioLDM pretrained checkpoint. From the different AudioLDM
checkpoints available in Hugging Face, audioldm-m-full11 is chosen as an
appropriate starting point, as it presents the best results in text-to-audio
synthesis and is the only checkpoint that has been trained on audio CLAP
embeddings instead of text. However, the audio encoder is not available
in Diffusers, so it is converted from the original checkpoint first. For this,
an existing conversion script from the Diffusers library is utilized and
modified accordingly. A few months later, new AudioLDM checkpoints
are released12, including a version of audioldm-m-full but fine-tuned on
the MusicCaps dataset (Agostinelli et al., 2023). This version is named
audioldm-m-text-ft, as it uses CLAP text embeddings during fine-tuning.
Although showing worse performance than the previous checkpoint for
general audio synthesis tasks, the new checkpoint is expected to work best
for purely musical output. The checkpoint is converted to the Diffusers
format, and used for the training experiments described next.

6https://github.com/haoheliu/AudioLDM
7https://github.com/lllyasviel/ControlNet
8https://github.com/huggingface/diffusers
9https://github.com/huggingface/transformers

10https://github.com/huggingface/accelerate
11https://huggingface.co/cvssp/audioldm-m-full
12https://zenodo.org/record/7813012
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ControlNet architecture adaptation. Once the checkpoint is selected,
the ControlNet architecture must be adapted to the architecture of Audi-
oLDM. A ControlNet training script and a Hugging Face blog post13 (Cuenca
& Apolinário, 2023) are provided by its authors, which serves as a starting
point for the current training experiments. The ControlNet code in Diffusers
is first generalized, making it able to accept other latent diffusion model
architectures different to Stable Diffusion. This includes the possibility of
concatenating the conditioning vector to the time embedding, in contrast
to the cross-attention mechanism used in Stable Diffusion (Rombach et al.,
2022). The resulting code is available as a fork of the original Diffusers
repository14.

MIDI conditioning input. As mentioned in the ControlNet original paper
(Zhang & Agrawala, 2023), the conditioning input must be adapted to fit the
dimensions of the input features of the UNet, which are equal to the latent
dimensions of the VAE. In the case of AudioLDM, these features are of size
128×128, in contrast to the input features of size 64×64 in Stable Diffusion.
The ControlNet code provides its own VAE encoder, to adjust the size of
the conditioning input accordingly. In the current work, MIDI is the desired
conditioning input. As mentioned earlier, a piano roll can serve as an image-
like representation of MIDI. This contains time information in the horizontal
axis, and frequency in the vertical axis. An example of a piano roll and
the corresponding mel-spectrogram of its audio pair from the MAESTRO
dataset is shown in Figure 7. As can be seen, there is a correspondence
between both images. Although the vertical axis from the piano roll is not
in the mel scale, we can expect the VAE encoder to figure this out at the
time of encoding this image into a latent representation of size 128 × 128.
In MIDI-AudioLDM, the piano rolls are extracted from the MIDI files using
the pretty-midi15 library (Raffel & Ellis, 2014). The pretty-midi method
for converting a MIDI file into a piano roll ignores drum tracks by default.
A number of training experiments with the different datasets and excluding
or including drum annotations are described next.

13https://huggingface.co/blog/train-your-controlnet
14https://github.com/lauraibnz/diffusers
15https://github.com/craffel/pretty-midi
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(a) Piano roll (b) Mel-spectrogram

Figure 7: Piano roll and mel-spectrogram corresponding to a MIDI-audio
pair from the MAESTRO dataset.

4.3 Training

In the case of the MAESTRO and Slakh datasets, train, test and validation
splits are provided. URMP, on the other hand, consists of a single split, so
the available samples are divided randomly into train (90%) and validation
(10%) splits. For the following training experiments, train splits are used for
training and validation splits are used to monitor the validation loss. The
training is run for 10k steps, where the steps per epoch depend on the size of
the dataset, and checkpoints are saved every 500 steps. After training, the
validation loss is observed, and the checkpoint with the lowest validation loss
is selected to avoid overfitting.

The training configurations employed in order to compare the performance
of MIDI-AudioLDM with respect to different combinations of datasets are
shown in Table 2. For the training runs involving URMP, ground-truth pitch
annotations are taken into account to improve the alignment quality of the
dataset. In the case of multiple datasets with significant difference in size,
weighting is applied to ensure that the amount of audio from each dataset
is balanced. In this table, mixes refer only to those from the Slakh dataset,
which contain drums and audio effects that are not present in the MIDI files.
As mentioned earlier, drum annotations are not present in the piano roll by
default. In some cases, these have been forced to appear, hoping that this
helps the model learn to apply MIDI conditioning to more percussive sounds.
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MODEL MAESTRO URMP Slakh
Drum

Mixes
Drum

stems annotations

MIDI-AudioLDM-M ✓
MIDI-AudioLDM-U ✓
MIDI-AudioLDM-M-U ✓ ✓
MIDI-AudioLDM-M-U-S-v1 ✓ ✓ ✓
MIDI-AudioLDM-M-U-S-v2 ✓ ✓ ✓ ✓
MIDI-AudioLDM-M-U-S-v3 ✓ ✓ ✓ ✓ ✓
MIDI-AudioLDM-M-U-S-v4 ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Summary of the training configurations used.

4.4 Evaluation

Once the training is realized, a series of experiments are conducted in order
to evaluate the effectiveness of MIDI-AudioLDM in a number of tasks. For
this, the following objective and subjective metrics are used:

Fréchet Audio Distance (FAD). The Fréchet Audio Distance (Kilgour
et al., 2019) measures the perceptual similarity between the distribution of
the output samples generated by the model and the distribution of the target
samples. FAD uses the VGGish (Hershey et al., 2017) model as a classifier.
The lower the FAD score, the higher the similarity between the generated and
the target audio. This measure is used as an evaluation metric in a number of
audio synthesis tasks, including MIDI-to-audio synthesis (Hawthorne et al.,
2022), and text-to-audio generation (Agostinelli et al., 2023; Copet et al.,
2023; Kreuk et al., 2023; H. Liu, Chen, et al., 2023; H. Liu, Tian, et al.,
2023). In our case, a PyTorch implementation16 of FAD is used.

MT3 Transcription F1. This metric measures how well the model re-
produces the notes and instruments from the MIDI data. As described in
(Hawthorne et al., 2022), the generated samples are passed through the MT3
transcription model (Gardner et al., 2022), and the F1 score is computed us-
ing the “Full” metric from the MT3 paper. A higher F1 implies a higher
correspondence between the target annotations and those extracted from the
generated audio. In order to calculate this metric, the official MT3 imple-
mentation17 is used.

16https://github.com/gudgud96/frechet-audio-distance
17https://github.com/magenta/mt3
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Multi-resolution STFT. This metric compares ground-truth and gener-
ated audio in the frequency domain. Presented in (Yamamoto et al., 2020)
as a multi-resolution short-time Fourier transform (STFT) loss function, this
measure evaluates the reconstruction capacity of a generative audio model.
A similar spectral loss function is employed in DDSP (Engel et al., 2020) and
DDSP-based MIDI-to-audio models (Renault et al., 2022; Y. Wu, Manilow,
et al., 2022). A PyTorch implementation18 of this metric is used for the
current experiments.

CLAP score. A CLAP score (Y. Wu, Chen, et al., 2022) is computed in or-
der to measure the similarity between the text descriptions and the generated
audio. A similar approach is used to evaluate a number of text-to-audio mod-
els (Copet et al., 2023; R. Huang et al., 2023; H. Liu, Tian, et al., 2023). As
in MusicGen (Copet et al., 2023), the official code implementation19 is used,
along one of the official pretrained CLAP models20 which is recommended
for music.

In respect to subjective evaluation, a number of listening tests are carried out.
For this, human participants are asked to listen to a series of 20-second audio
recordings and rate them accordingly. The recordings correspond to target
audio and audio synthesized by the different models, shown in a random or-
der. In the case of MIDI-to-audio synthesis, a Mean Opinion Score (MOS) is
utilized as in (Cooper et al., 2022; J. W. Kim et al., 2018), with a rating scale
ranging from 1 (very bad) to 5 (very good). For MIDI-conditional text-to-
audio synthesis, two measures are computed, the overall quality (OVL) and
the relevance to the text input (REL). This represents a common standard
in text-to-audio synthesis (Copet et al., 2023; Kreuk et al., 2023; H. Liu,
Chen, et al., 2023; H. Liu, Tian, et al., 2023). In our case, OVL and REL are
also rated on a 5-point Likert (Likert, 1932) scale. For all subjective metrics,
both the mean and the 95% Confidence Interval are reported.

18https://github.com/csteinmetz1/auraloss
19https://github.com/LAION-AI/CLAP
20https://huggingface.co/lukewys/laion clap/blob/main/music audioset epoch 15 esc

90.14.pt
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5 Results

In the current section, the experiments realized in order to evaluate several
audio synthesis tasks are described in more detail. The results obtained are
presented and discussed, and a comparison between models is carried out.

5.1 MIDI-to-Audio Synthesis

The first experiment is aimed to test the capacity of MIDI-AudioLDM to
synthesize a single-instrument MIDI track as precisely as possible. For
this, the MAESTRO test split is utilized, as most existing MIDI-to-audio
models are able to synthesize piano. Each MIDI file from the test split
is fed to MIDI-AudioLDM, along with the simple caption “piano”. For
comparison, a series of baseline models are utilized. This includes Flu-
idSynth (Moebert et al., 2018), which is an open-source real-time software
synthesizer available in Python, and the MIDI-to-audio model Spectrogram
Diffusion (Hawthorne et al., 2022). For this, the FluidSynth synthesis
method from pretty-midi is used, as well as the official Spectrogram
Diffusion inference code with a pretrained checkpoint21. Unfortunately,
DDSP-based MIDI-to-audio models (Renault et al., 2022; Y. Wu, Manilow,
et al., 2022) are currently not available, as their official code repositories
have not been mantained. The AudioLDM checkpoints AudioLDM-m-full

and AudioLDM-m-text-ft are also employed as baselines, using “piano” as
text input and without any kind of MIDI conditioning. The results from
this experiment are presented in Table 3.

As can be seen from the table, MIDI-AudioLDM acquires the best results
according to the FAD metric, which implies that the model is able to
synthesize piano sound in a realistic way. This is confirmed by the MOS
score, which shows that some of the MIDI-AudioLDM checkpoints, especially
MIDI-AudioLDM-M-U-S-v1, are preferred over Spectrogram Diffusion and
AudioLDM in a listening evaluation. The FAD results also prove that the
fine-tuned AudioLDM model works better than the original checkpoint for
purely musical output. On the other hand, the MIDI-AudioLDM results
for F1 are significantly lower than in the case of previous MIDI-to-audio
models, which means that the model is not synthesizing the original notes
from the MIDI as accurately as expected. However, the value for the

21https://github.com/magenta/music-spectrogram-diffusion

23

https://github.com/magenta/music-spectrogram-diffusion


MODEL FAD↓ STFT↓ F1↑ MOS↑

GroundTruth - - 0.39 4.22±2.23

FluidSynth 4.69 2.85 0.37 4.22±2.23

Spectrogram Diffusion 11.17 2.49 0.16 2.67±1.46

AudioLDM-m-full 4.99 - - 2.22±0.84

AudioLDM-m-text-ft 2.61 - - 2.56±1.08

MIDI-AudioLDM-M 2.38 3.19 0.03 2.78±1.23

MIDI-AudioLDM-U 7.11 3.40 0.02 2.78±1.23

MIDI-AudioLDM-M-U 2.06 3.18 0.05 2.56±1.08

MIDI-AudioLDM-M-U-S-v1 2.01 3.24 0.03 3.11±1.46

MIDI-AudioLDM-M-U-S-v2 1.95 3.04 0.03 2.44±1.00

MIDI-AudioLDM-M-U-S-v3 2.14 3.25 0.02 2.89±1.31

MIDI-AudioLDM-M-U-S-v4 2.57 3.81 0.02 2.89±1.31

Table 3: MIDI-to-audio evaluation using MAESTRO test split.

STFT metric seems reasonable, so the synthesized audio must share certain
musical similarity with the target audio. Therefore, it could be concluded
that MIDI-AudioLDM provides a creative interpretation of the MIDI notes,
rather than serve as an accurate MIDI-to-audio synthesis method. In respect
to the different MIDI-AudioLDM configurations, for this experiment the best
objective results are obtained from the model trained on the MAESTRO,
URMP and Slakh datasets, excluding drums and including mixes, and
without drum annotations. However, the model trained on all datasets,
but excluding both drums and mixes, shows the best results in a subjective
evaluation. In general terms, we can say that MIDI-AudioLDM outperforms
the original AudioLDM model, while enabling MIDI conditioning, which the
model interprets in a creative way.

5.2 MIDI-Conditional Text-to-Audio Synthesis

Secondly, an experiment is constructed to assess MIDI-AudioLDM’s ability to
synthesize a coherent mixture, containing drums and a variety of instruments,
from the MIDI file of a single instrument. For this, the Slakh test split is
used, as it contains complex mixes as well as individual instrument stems.
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A Whisper audio captioning model22 (Kadlćık et al., 2023) is utilized to
acquire descriptive captions from the mix files available in the dataset. Each
of these captions is then fed to MIDI-AudioLDM, along with the MIDI file
of one of the individual instruments. The individual instrument stem to
use in each case is chosen randomly, excluding drums and instruments not
present in the MIDI files. For comparison purposes, the selected MIDI file is
synthesized with the use of FluidSynth (Moebert et al., 2018), and then fed to
the MusicGen (Copet et al., 2023) model with melody conditioning23, along
with the extracted caption from the mixture. In addition, the AudioLDM
checkpoints are utilized as baselines, using the extracted captions as text
input and with no MIDI or melody conditioning. The results from this
second experiment are shown in Table 4.

MODEL FAD↓ STFT↓ CLAP↑ OVL↑ REL↑

GroundTruth - - 0.26 4.22±2.23 3.44±1.69

FluidSynth+MusicGen 2.28 3.37 0.18 3.89±2.01 3.75±2.04

AudioLDM-m-full 7.76 - 0.23 1.86±0.69 2.57±1.26

AudioLDM-m-text-ft 11.58 - 0.17 1.67±0.58 1.57±0.46

MIDI-AudioLDM-M 12.05 3.84 0.21 2.00±0.80 2.00±0.80

MIDI-AudioLDM-U 11.19 3.46 0.19 2.00±0.80 2.13±0.84

MIDI-AudioLDM-M-U 13.01 3.58 0.20 1.83±0.73 1.71±0.57

MIDI-AudioLDM-M-U-S-v1 6.49 3.17 0.26 2.29±1.03 2.57±1.26

MIDI-AudioLDM-M-U-S-v2 6.36 3.09 0.24 2.13±0.84 2.50±1.11

MIDI-AudioLDM-M-U-S-v3 7.77 3.26 0.23 1.71±0.57 1.86±0.69

MIDI-AudioLDM-M-U-S-v4 5.94 3.70 0.25 2.00±0.88 2.22±0.84

Table 4: MIDI-conditional text-to-audio evaluation using Slakh test split.

The results presented suggest that the current approach is not sufficient for
the generation of complex mixtures from a single instrument stem. Even
though the CLAP metric reports the best results for MIDI-AudioLDM, the
subjective measure REL proves that the adherence to the provided text de-
scriptions is much lower than in the case of MusicGen. Moreover, the FAD
measure is notably higher than in the previous experiment, proving lower
similarity between the generated and the target audio in terms of quality. In

22https://huggingface.co/MU-NLPC/whisper-large-v2-audio-captioning
23https://huggingface.co/facebook/musicgen-melody
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the same line, the subjective measure MOS demonstrates worse quality than
in the case of MusicGen. On the other hand, the STFT metric reports good
results, which suggests certain spectral similarity between the synthesized
audio and the target mixes. This could mean that some musical aspects are
preserved. In respect to the MIDI-AudioLDM model variations, in this ex-
periment those that have not been trained on the Slakh dataset present the
worse results. This seems logical, as they have not learnt from complex mix-
tures and tracks which contain drums. However, the MIDI-AudioLDM model
that shows the best results in a subjective evaluation is AudioLDM-M-U-S-v1,
which has not learnt from the Slakh drums or mixtures. Finally, all the MIDI-
AudioLDM models that have learnt on the three datasets show better results
than AudioLDM, which implies that the addition of MIDI conditioning has
added value to the model, as well as providing a new feature.

6 Ethical and Social Implications

The development of large-scale machine learning models should always in-
volve the consideration of a series of ethical and social implications. This
is especially crucial in the case of generative models, as they can often raise
concerns related to ownership and copyright issues, as well as to the potential
generation of deep fakes.

In the image generation field, the recent surge of highly realistic generative
models has posed a number of unprecedented ethical questions. This is es-
pecially evident following the emergence and popularization of text-to-image
models like Stable Diffusion (Rombach et al., 2022). As discussed in Heikkilä,
2022, some of the datasets used for training such models have been created
by scraping images from the internet, often without obtaining permissions
and providing proper attribution to artists. This can lead to systems being
able to generate artworks in the style of artists and individuals that are well
represented in these datasets, even without their explicit consent. In respond
to these concerns, the website “Have I Been Trained” (Herndon & Dryhurst,
2023), allows individuals to check if their works or identity are included in
some of the largest public text-to-image datasets.

As described in (Barnett, 2023), advancements in the audio domain usu-
ally follow those from the image field, and so do the ethical implications
of these models. The introduction of generative audio models like Jukebox
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(Dhariwal et al., 2020), which can be conditioned on specific artists or gen-
res, has lead to debates on copyright infringement. This is the case of the
music duo DADABOTS, who created a Britney Spears cover of Frank Sina-
tra (Robitzski, 2020) with the use of this tool. The song was removed from
YouTube over copyright claims, although finally restored after a legal argu-
mentation from the artists. On the other hand, the musician Holly Herndon
has introduced Holly+ (Herndon & Never Before Heard Sounds, 2021), an
AI music tool that can perform style transfer on her own voice. As described
by the artist, the tool aims to embrace the utility of deepfake technology
rather than to be disempowered by it.

In respect to text-to-audio models, as pointed out by (Barnett, 2023), only
a few authors have discussed the possible negative impact of these kinds
of models. This is the case of MusicLM (Agostinelli et al., 2023), which
highlights the risk of copyright infringement and raises concern about the
potential biases present in the training data. These can lead to an under-
representation of certain cultures, as well as to issues related to cultural
appropriation. In Make-An-Audio (R. Huang et al., 2023), the authors un-
derline the potential risk of misinformation caused by deep fakes, as well as
a possible increase in unemployment for related occupations like sound engi-
neering. More recently, MusicGen (Copet et al., 2023) states to have ensured
that the training data was covered by legal agreements, and comments on
the bias present in these datasets towards Western-style music. Moreover,
the authors hope that more advanced controls, such as melody conditioning,
can become useful to both amateur and professional musicians.

In the case of MIDI-AudioLDM, we acknowledge that there is a strong bias
present in the training data towards music from the Western tradition. As
discussed in (Gardner et al., 2022), datasets from other musical traditions are
currently low-resource and represent an important area for future work. On
the other hand, the current research aims to democratize the music creation
process. While DAWs and VST intruments are often expensive and remain
unaffordable for a number of people, an open-source tool for text-driven
MIDI-to-audio synthesis can be a valuable resource for anyone with access
to the internet. Moreover, an interface like Hugging Face can facilitate the
music creation process, as very little coding experience is required to utilize
the organization’s Spaces available in their website.

27



7 Conclusions

In conclusion, MIDI-AudioLDM introduces a novel task: MIDI-conditional
text-to-audio synthesis, for which no prior methods currently exist. Simulta-
neously, it offers an initial approach to the problem by incorporating MIDI
conditioning into AudioLDM. The resulting architecture can perform MIDI-
to-audio synthesis by creatively interpreting an input note sequence based
on the given text description. This serves as a valuable tool for music pro-
duction, where preserving aspects like musical key is often crucial during the
audio synthesis process.

Furthermore, MIDI-AudioLDM enhances the capabilities of its baseline
model AudioLDM. In addition to offering improved quality for purely
musical output in direct text-to-audio synthesis, it introduces a new feature
that enables conditioning based on MIDI note sequences. This note-level
control can complement mood and timbre conditioning provided by text
descriptions. On the other hand, MIDI-AudioLDM outperforms previous
MIDI-to-audio models like Spectrogram Diffusion in terms of audio quality,
and is able to synthesize sounds from certain instruments more realistically.

However, this initial approach remains insufficient and opens up various av-
enues for possible future work. As text-to-audio synthesis continues to be a
focal point of research, several highly successful models have been released
during the development of this work. Some examples are MusicGen or Au-
dioLDM 2, both of which use a language modeling approach to achieve text-
to-audio synthesis in the music domain, showing a substantial improvement
in respect to previous works of this kind. For this reason, it would seem
appropriate to adapt the concept behind MIDI-AudioLDM to a range of new
models and architectures, in order to achieve optimal results.

Similarly, as described previously, the generation of audio in the frequency
domain can lead to a number of inefficiencies. While this approach is often
an immediate response to recent advancements that have proven successful
in the image generation domain, more suitable model architectures and con-
figurations are usually introduced which take more into account how sound is
naturally generated and perceived. For this reason, new strategies to address
the task of text-to-audio synthesis are expected to appear in the following
months, which could be adapted to incorporate MIDI conditioning as in
MIDI-AudioLDM.
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Finally, in the current work, MIDI conditioning has been implemented with
the use of ControlNet, without conducting a thorough study of the existing
alternatives that provide additional control to a latent diffusion model. As
demonstrated by the results, this approach has limitations and may prove
inadequate for cases that require fine-grained note-level control in the MIDI-
to-audio synthesis process. In the same line, using a continuous representa-
tion to encode MIDI is not optimal, and a number of alternatives should be
considered. As proved by several generative music models in the symbolic
domain, learning MIDI representations with the use of language models such
as Transformers can result successful, as both share similarities in terms of
syntax rules and long-term structure.

For these reasons, MIDI-AudioLDM is presented as a valuable contribution
in the field of neural audio synthesis. It takes a first step towards solving
the challenge of incorporating MIDI conditioning into a text-to-audio model,
and sets the stage for further advancements and refinements in this area of
research.
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eration with Long-Context Latent Diffusion (tech. rep.). arXiv. https
://doi.org/10.48550/arXiv.2301.11757

Shih, Y.-J., Wu, S.-L., Zalkow, F., Müller, M., & Yang, Y.-H. (2022). Theme
Transformer: Symbolic Music Generation with Theme-Conditioned
Transformer (tech. rep.). arXiv. https://doi.org/10.48550/arXiv.211
1.04093

Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., & Ganguli, S. (2015).
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
(tech. rep.). arXiv. https://doi.org/10.48550/arXiv.1503.03585

Steinberg. (1996). Steinberg cubase 3. Sound On Sound.
van den Oord, A., Vinyals, O., & Kavukcuoglu, K. (2018). Neural discrete

representation learning (tech. rep.). https://arxiv.org/abs/1711.0093
7

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need (tech.
rep.). arXiv. https://doi.org/10.48550/arXiv.1706.03762

von Platen, P., Patil, S., Lozhkov, A., Cuenca, P., Lambert, N., Rasul, K.,
Davaadorj, M., & Wolf, T. (2022). Diffusers: State-of-the-art diffusion
models. https://github.com/huggingface/diffusers

Weidenaar, R. (1995). Magic music from the telharmonium. Metuchen, N.J.
: Scarecrow Press. Retrieved September 4, 2023, from http://archive
.org/details/bub gb Gr2kq-598-YC

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac,
P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von
Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Scao, T. L., Gugger,
S., . . . Rush, A. M. (2020). Transformers: State-of-the-art natural
language processing. Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, 38–
45. https://github.com/huggingface/transformers

Wu, H.-H., Seetharaman, P., Kumar, K., & Bello, J. P. (2022). Wav2CLIP:
Learning Robust Audio Representations From CLIP (tech. rep.).
arXiv. https://doi.org/10.48550/arXiv.2110.11499

Wu, Y., Chen, K., Zhang, T., Hui, Y., Berg-Kirkpatrick, T., & Dubnov,
S. (2022). Large-scale Contrastive Language-Audio Pretraining with
Feature Fusion and Keyword-to-Caption Augmentation (tech. rep.).
arXiv. https://doi.org/10.48550/arXiv.2211.06687

36

https://doi.org/10.48550/arXiv.2301.11757
https://doi.org/10.48550/arXiv.2301.11757
https://doi.org/10.48550/arXiv.2111.04093
https://doi.org/10.48550/arXiv.2111.04093
https://doi.org/10.48550/arXiv.1503.03585
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/1711.00937
https://doi.org/10.48550/arXiv.1706.03762
https://github.com/huggingface/diffusers
http://archive.org/details/bub_gb_Gr2kq-598-YC
http://archive.org/details/bub_gb_Gr2kq-598-YC
https://github.com/huggingface/transformers
https://doi.org/10.48550/arXiv.2110.11499
https://doi.org/10.48550/arXiv.2211.06687


Wu, Y., Manilow, E., Deng, Y., Swavely, R., Kastner, K., Cooijmans, T.,
Courville, A., Huang, C.-Z. A., & Engel, J. (2022). MIDI-DDSP:
Detailed Control of Musical Performance via Hierarchical Modeling
(tech. rep.). arXiv. https://doi.org/10.48550/arXiv.2112.09312

Yamamoto, R., Song, E., & Kim, J.-M. (2020). Parallel WaveGAN: A fast
waveform generation model based on generative adversarial networks
with multi-resolution spectrogram (tech. rep.). arXiv. https://doi.org
/10.48550/arXiv.1910.11480

Yang, D., Yu, J., Wang, H., Wang, W., Weng, C., Zou, Y., & Yu, D. (2023).
Diffsound: Discrete Diffusion Model for Text-to-sound Generation
(tech. rep.). arXiv. https://doi.org/10.48550/arXiv.2207.09983

Zeng, M., Tan, X., Wang, R., Ju, Z., Qin, T., & Liu, T.-Y. (2021).
MusicBERT: Symbolic Music Understanding with Large-Scale Pre-
Training (tech. rep.). arXiv. https://doi.org/10.48550/arXiv.2106.05
630

Zhang, L., & Agrawala, M. (2023). Adding Conditional Control to Text-to-
Image Diffusion Models (tech. rep.). arXiv. https://doi.org/10.48550
/arXiv.2302.05543

37

https://doi.org/10.48550/arXiv.2112.09312
https://doi.org/10.48550/arXiv.1910.11480
https://doi.org/10.48550/arXiv.1910.11480
https://doi.org/10.48550/arXiv.2207.09983
https://doi.org/10.48550/arXiv.2106.05630
https://doi.org/10.48550/arXiv.2106.05630
https://doi.org/10.48550/arXiv.2302.05543
https://doi.org/10.48550/arXiv.2302.05543


Appendix A Survey

In the initial stage of the research, a survey titled “Text-driven deep learning
music production tools” was realized. The survey was hosted in Google Forms
and was addressed to both amateur and professional music producers. The
purpose of this survey was to find out which text-driven audio synthesis tools
could serve as a useful tool during the music production process. Figure 8
shows the main questions from the survey, as well as a summary of the
provided answers. Even though the participation was low (≈ 15 participants)
and the results are far from conclusive, a series of interesting deductions can
be made from them.

In the first place, respondents were asked how useful they would find an
AI music production tool for the following purposes: sample generation,
melody generation, loop generation, accompaniment generation, and whole
song generation. As seen by the provided answers, most music producers
prefer tools for specific tasks (sample generation), in contrast to having less
control over the musical output (whole song generation).

Secondly, respondents were told to score the usefulness of the following appli-
cations: text-to-audio generation, text-to-MIDI generation, text-conditional
MIDI-to-audio synthesis, text-conditional audio-to-audio translation, and
text-conditional MIDI-to-MIDI translation. Text-to-audio tools are seen as
the most useful to music producers, followed by text-driven applications in-
volving MIDI and, finally, text-conditional audio-to-audio translation.

A third question asked how likely the respondents were to use a tool to gen-
erate the following types of sounds: environmental sounds, synthetic sounds,
acoustic instrument sounds, singing voice, and drums. As seen by the an-
swers, most producers are interested in generating environmental and syn-
thetic sounds. Many respondents did not find reproducing sounds of acoustic
instruments particularly useful.

Finally, the respondents were asked to rate the usefulness of the following
types of text conditioning: name or type of instrument, timbric features, low-
level, mid-level or high-level audio features, or style of specific musicians. The
results provided show that most music producers are interested in describing
timbric features, while the remaining features are considered equally useful.
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Figure 8: Results from “Text-driven deep learning music production tools”
survey, hosted in Google Forms.

39



Appendix B Demo

A demo for MIDI-AudioLDM24 is hosted in Hugging Face Spaces. The re-
sulting interface is shown in Figure 9. In this case, one of the predetermined
examples has been loaded. The selected MIDI file can be removed, and a
local MIDI file can be uploaded instead. The MIDI file is automatically syn-
thesized using a basic synthesis tool, and shown on the left for comparison
purposes and to facilitate the selection of the desired duration. The Advanced
Settings, hidden by default, offer detailed control over the generation pro-
cess. This includes audio duration, negative prompt and conditioning scale
among other parameters that are described accordingly. Once the ‘Generate’
button is pressed, the audio is synthesized and displayed on the right.

Figure 9: MIDI-AudioLDM demo hosted in Hugging Face Spaces.

24https://huggingface.co/spaces/lauraibnz/midi-audioldm
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Appendix C Conferences

MIDI-AudioLDM has been presented at Sónar+D 2023 and will be presented
at Volumens Festival 2023 in the following weeks. A brief description of both
of these is given next:

• Sónar+D. 15-17 July 2023. Barcelona, Spain. Sónar+D25 is an
international conference and festival that explores the intersection of
creativity, technology and art, with a special focus on music. MIDI-
AudioLDM was selected along with 34 other projects out of more than
450 applications. The project was showcased during the three days
of the festival as part of the Project Area, in the section of Music &
Sound26. A large number of people were able to ask questions about
MIDI-AudioLDM and test the Hugging Face demo. The project was
featured in the Sónar+D pre-summer recap27 as part of the festival’s
newsletter.

• Volumens Festival. 23 September 2023. Valencia, Spain. Volu-
mens28 is an annual festival that encompasses and explores the field be-
tween contemporary art, music, science, and technology. With music as
its main focus, the current edition of the festival will be dedicated to ar-
tificial intelligence and its applications to art. A hybrid talk/workshop
will be presented29 about text-to-audio models and MIDI-AudioLDM.

In addition, the Hugging Face Space for MIDI-AudioLDM was awarded a
GPU Grant30 by the Hugging Face community. This Grant is provided to a
select number of “innovative Spaces” to assist in covering the costs of GPU
hardware upgrades.

25https://sonar.es/en/programme/sonar-d
26https://sonar.es/es/actividad/project-area-music-and-sound
27https://r.contact.sonar.es/mk/mr/sh/1t6AVsd2XFnIGF9UytoK2Oain1CyiD/6lo-R

Hi1DsPm
28https://volumens.es/en/home-2/
29https://volumens.es/es/project/laura-ibanez/
30https://huggingface.co/docs/hub/spaces-gpus#community-gpu-grants
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